The Language of Physics

The meaning of life in 15 pages. 🙂 [Or… Well… At least a short description of the Universe… Not sure it helps in sense-making.] 🙂

Post scriptum (25 March 2021): Because this post is so extremely short and happy, I want to add a sad anecdote which illustrates what I have come to regard as the sorry state of physics as a science.

A few days ago, an honest researcher put me in cc of an email to a much higher-brow researcher. I won’t reveal names, but the latter – I will call him X – works at a prestigious accelerator lab in the US. The gist of the email was a question on an article of X: “I am still looking at the classical model for the deep orbits. But I have been having trouble trying to determine if the centrifugal and spin-orbit potentials have the same relativistic correction as the Coulomb potential. I have also been having trouble with the Ademko/Vysotski derivation of the Veff = V×E/mc2 – V2/2mc2 formula.”

I was greatly astonished to see X answer this: “Hello – What I know is that this term comes from the Bethe-Salpeter equation, which I am including (#1). The authors say in their book that this equation comes from the Pauli’s theory of spin. Reading from Bethe-Salpeter’s book [Quantum mechanics of one and two electron atoms]: “If we disregard all but the first three members of this equation, we obtain the ordinary Schroedinger equation. The next three terms are peculiar to the relativistic Schroedinger theory”. They say that they derived this equation from covariant Dirac equation, which I am also including (#2). They say that the last term in this equation is characteristic for the Dirac theory of spin ½ particles. I simplified the whole thing by choosing just the spin term, which is already used for hyperfine splitting of normal hydrogen lines. It is obviously approximation, but it gave me a hope to satisfy the virial theoremOf course, now I know that using your Veff potential does that also. That is all I know.” [I added the italics/bold in the quote.]

So I see this answer while browsing through my emails on my mobile phone, and I am disgusted – thinking: Seriously? You get to publish in high-brow journals, but so you do not understand the equations, and you just drop terms and pick the ones that suit you to make your theory fit what you want to find? And so I immediately reply to all, politely but firmly: “All I can say, is that I would not use equations which I do not fully understand. Dirac’s wave equation itself does not make much sense to me. I think Schroedinger’s original wave equation is relativistically correct. The 1/2 factor in it has nothing to do with the non-relativistic kinetic energy, but with the concept of effective mass and the fact that it models electron pairs (two electrons – neglect of spin). Andre Michaud referred to a variant of Schroedinger’s equation including spin factors.”

Now X replies this, also from his iPhone: “For me the argument was simple. I was desperate trying to satisfy the virial theorem after I realized that ordinary Coulomb potential will not do it. I decided to try the spin potential, which is in every undergraduate quantum mechanical book, starting with Feynman or Tippler, to explain the hyperfine hydrogen splitting. They, however, evaluate it at large radius. I said, what happens if I evaluate it at small radius. And to my surprise, I could satisfy the virial theorem. None of this will be recognized as valid until one finds the small hydrogen experimentally. That is my main aim. To use theory only as a approximate guidance. After it is found, there will be an explosion of “correct” theories.” A few hours later, he makes things even worse by adding: “I forgot to mention another motivation for the spin potential. I was hoping that a spin flip will create an equivalent to the famous “21cm line” for normal hydrogen, which can then be used to detect the small hydrogen in astrophysics. Unfortunately, flipping spin makes it unstable in all potential configurations I tried so far.”

I have never come across a more blatant case of making a theory fit whatever you want to prove (apparently, X believes Mills’ hydrinos (hypothetical small hydrogen) are not a fraud), and it saddens me deeply. Of course, I do understand one will want to fiddle and modify equations when working on something, but you don’t do that when these things are going to get published by serious journals. Just goes to show how physicists effectively got lost in math, and how ‘peer reviews’ actually work: they don’t. :-/

A Zitterbewegung model of the neutron

As part of my ventures into QCD, I quickly developed a Zitterbewegung model of the neutron, as a complement to my first sketch of a deuteron nucleus. The math of orbitals is interesting. Whatever field you have, one can model is using a coupling constant between the proportionality coefficient of the force, and the charge it acts on. That ties it nicely with my earlier thoughts on the meaning of the fine-structure constant.

My realist interpretation of quantum physics focuses on explanations involving the electromagnetic force only, but the matter-antimatter dichotomy still puzzles me very much. Also, the idea of virtual particles is no longer anathema to me, but I still want to model them as particle-field interactions and the exchange of real (angular or linear) momentum and energy, with a quantization of momentum and energy obeying the Planck-Einstein law.

The proton model will be key. We cannot explain it in the typical ‘mass without mass’ model of zittering charges: we get a 1/4 factor in the explanation of the proton radius, which is impossible to get rid of unless we assume some ‘strong’ force come into play. That is why I prioritize a ‘straight’ attack on the electron and the proton-electron bond in a primitive neutron model.

The calculation of forces inside a muon-electron and a proton (see ) is an interesting exercise: it is the only thing which explains why an electron annihilates a positron but electrons and protons can live together (the ‘anti-matter’ nature of charged particles only shows because of opposite spin directions of the fields – so it is only when the ‘structure’ of matter-antimatter pairs is different that they will not annihilate each other).


In short, 2021 will be an interesting year for me. The intent of my last two papers (on the deuteron model and the primitive neutron model) was to think of energy values: the energy value of the bond between electron and proton in the neutron, and the energy value of the bond between proton and neutron in a deuteron nucleus. But, yes, the more fundamental work remains to be done !

Cheers – Jean-Louis

The complementarity of wave- and particle-like viewpoints on EM wave propagation

In 1995, W.E. Lamb Jr. wrote the following on the nature of the photon: “There is no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity among physicists and optical scientists. I admit that the word is short and convenient. Its use is also habit forming. Similarly, one might find it convenient to speak of the “aether” or “vacuum” to stand for empty space, even if no such thing existed. There are very good substitute words for “photon”, (e.g., “radiation” or “light”), and for “photonics” (e.g., “optics” or “quantum optics”). Similar objections are possible to use of the word “phonon”, which dates from 1932. Objects like electrons, neutrinos of finite rest mass, or helium atoms can, under suitable conditions, be considered to be particles, since their theories then have viable non-relativistic and non-quantum limits.”[1]

The opinion of a Nobel Prize laureate carries some weight, of course, but we think the concept of a photon makes sense. As the electron moves from one (potential) energy state to another – from one atomic or molecular orbital to another – it builds an oscillating electromagnetic field which has an integrity of its own and, therefore, is not only wave-like but also particle-like.

We, therefore, dedicated the fifth chapter of our re-write of Feynman’s Lectures to a dual analysis of EM radiation (and, yes, this post is just an announcement of the paper so you are supposed to click the link to read it). It is, basically, an overview of a rather particular expression of Maxwell’s equations which Feynman uses to discuss the laws of radiation. I wonder how to – possibly – ‘transform’ or ‘transpose’ this framework so it might apply to deep electron orbitals and – possibly – proton-neutron oscillations.

[1] W.E. Lamb Jr., Anti-photon, in: Applied Physics B volume 60, pages 77–84 (1995).

Bell’s No-Go Theorem

I’ve been asked a couple of times: “What about Bell’s No-Go Theorem, which tells us there are no hidden variables that can explain quantum-mechanical interference in some kind of classical way?” My answer to that question is quite arrogant, because it’s the answer Albert Einstein would give when younger physicists would point out that his objections to quantum mechanics (which he usually expressed as some new  thought experiment) violated this or that axiom or theorem in quantum mechanics: “Das ist mir wur(sch)t.

In English: I don’t care. Einstein never lost the discussions with Heisenberg or Bohr: he just got tired of them. Like Einstein, I don’t care either – because Bell’s Theorem is what it is: a mathematical theorem. Hence, it respects the GIGO principle: garbage in, garbage out. In fact, John Stewart Bell himself – one of the third-generation physicists, we may say – had always hoped that some “radical conceptual renewal”[1] might disprove his conclusions. We should also remember Bell kept exploring alternative theories – including Bohm’s pilot wave theory, which is a hidden variables theory – until his death at a relatively young age. [J.S. Bell died from a cerebral hemorrhage in 1990 – the year he was nominated for the Nobel Prize in Physics. He was just 62 years old then.]

So I never really explored Bell’s Theorem. I was, therefore, very happy to get an email from Gerard van der Ham, who seems to have the necessary courage and perseverance to research this question in much more depth and, yes, relate it to a (local) realist interpretation of quantum mechanics. I actually still need to study his papers, and analyze the YouTube video he made (which looks much more professional than my videos), but this is promising.

To be frank, I got tired of all of these discussions – just like Einstein, I guess. The difference between realist interpretations of quantum mechanics and the Copenhagen dogmas is just a factor 2 or π in the formulas, and Richard Feynman famously said we should not care about such factors (Feynman’s Lectures, III-2-4). Modern physicists fudge them away consistently. They’ve done much worse than that, actually. :-/ They are not interested in truth. Convention, dogma, indoctrination – – non-scientific historical stuff – seems to prevent them from that. And modern science gurus – the likes of Sean Carroll or Sabine Hossenfelder etc. – play the age-old game of being interesting: they pretend to know something you do not know or – if they don’t – that they are close to getting the answers. They are not. They have them already. They just don’t want to tell you that because, yes, it’s the end of physics.

The geometry of the matter-wave

Yesterday, I was to talk for about 30 minutes to some students who are looking at classical electron models as part of an attempt to try to model what might be happening to an electron when moving through a magnetic field. Of course, I only had time to discuss the ring current model, and even then it inadvertently turned into a two-hour presentation. Fortunately, they were polite and no one dropped out—although it was an online Google Meet. In fact, they reacted quite enthusiastically, and so we all enjoyed it a lot. So much that I adjusted the presentation a bit the next morning (which added even more time to it unfortunately) so as to add it to my YouTube channel. So this is the link to it, and I hope you enjoy it. If so, please like it—and share it! 🙂

Oh! Forgot to mention: in case you wonder why this video is different than others, see my Tweet on Sean Carroll’s latest series of videos hereunder. That should explain it.

Sean Carroll

Post scriptum: I got the usual question, of course: if an electron is a ring current, then why doesn’t it radiate its energy away? The easy answer is: an electron is an electron and it doesn’t—for the same reason that an electron in an atomic orbital or a Cooper pair in a superconducting loop of current does not radiate energy away. The more difficult answer is a bit mysterious: it has got to do with flux quantization and, most importantly, with the Planck-Einstein relation. I cannot be too long here (this is just a footnote in a blog post) but the following elements should be noted:

1. The Planck-Einstein law embodies a (stable) wavicle: a wavicle respects the Planck-Einstein relation (E = h·f) as well as Einstein’s mass-energy equivalence relation (E = mc2). A wavicle will, therefore, carry energy but it will also pack one or more units of Planck’s quantum of action. Both the energy as well as this finite amount of physical action (Wirkung in German) will be conserved—cycle after cycle.

2. Hence, equilibrium states should be thought of as electromagnetic oscillations without friction. Indeed, it is the frictional element that explains the radiation of, say, an electron going up and down in an antenna and radiating some electromagnetic signal out. To add to this rather intuitive explanation, I should also remind you that it is the accelerations and decelerations of the electric charge in an antenna that generate the radio wave—not the motion as such. So one should, perhaps, think of a charge going round and round as moving like in a straight line—along some geodesic in its own space. That’s the metaphor, at least.

3. Technically, one needs to think in terms of quantized fluxes and Poynting vectors and energy transfers from kinetic to potential (and back) and from ‘electric’ to ‘magnetic’ (and back). In short, the electron really is an electromagnetic perpetuum mobile ! I know that sounds mystical (too) but then I never promised I would take all of the mystery away from quantum physics ! 🙂 If there would be no mystery left, I would not be interested in physics. :wink: On the quantization of flux for superconducting loops: see, for example, There is other stuff you may want to dig into too, like my alternative Principles of Physics, of course ! 🙂  

Revisiting the electron double-slit experiment

We wrote about the significance of the 2012 University of Nebraska-Lincoln double-slit experiment with electrons before—as part of our Reading Feynman blog, to be precise. However, we did not have much of an understanding of matter-waves then. Hence, we talked about the de Broglie wavelength (λL = h/p) and tried to relate it to the interference pattern without any idea of what the concept of the de Broglie wavelength actually means. We, therefore, feel it is appropriate to revisit this subject as one of our very first entries for this new blog, which wants to probe a bit deeper.

Let us recall the basics of the model. We think of an electron as a pointlike charge in perpetual light-like motion (Schrödinger’s Zitterbewegung). The anomaly in the magnetic moment tells us the charge is pointlike but not dimensionless. Indeed, Schwinger’s α/2π factor for the anomaly is consistent with the idea of the classical electron radius being the radius of the pointlike charge, while the radius of its oscillation is equal to the Compton scattering radius of the electron. The two radii are related through the fine-structure constant (α ≈ 0.0073):

re = α·rC = αħ/mc ≈ 0.0073·0.386 pm (10−12 m)  ≈ 2.818 fm (10−15 m)

 It is good to get some sense of the scales here—and of the scale of the slits that were used in the mentioned experiment (shown below).


The insert in the upper-left corner shows the two slits: they are each 50 nanometer wide (50×10–9 m) and 4 micrometer tall (4×10–6 m). The thing in the middle of the slits is just a little support. Please do take a few seconds to contemplate the technology behind this feat: 50 nm is 50 millionths of a millimeter. Try to imagine dividing one millimeter in ten, and then one of these tenths in ten again, and again, and once again, again, and again. You just can’t imagine that, because our mind is used to addition/subtraction and, to some extent, with multiplication/division: our mind is not used to imaging numbers like 10–6 m or 10–15 m. Our mind is not used to imagine (negative) exponentiation because it is not an everyday phenomenon.

The second inset (in the upper-right corner) shows the mask that can be moved to close one or both slits partially, or to close them completely. It gives the interference patterns below (all illustrations here are taken from the original article—we hope the authors do not mind us popularizing their achievements). The inset (upper-left corner) shows the position of the mask vis-á-vis the slits. The electrons are fired one-by-one and, of course, few get through when the slits are closed or partly closed.

Interference 1

The one-by-one firing of the electrons is, without any doubt, the most remarkable thing about the whole experiment. Why do we say that? Because electron interference had already been demonstrated in 1927 (the Davisson-Germer experiment), just a few years after Louis de Broglie had advanced his hypothesis on the matter-wave. However, till this 2012 experiment, it had never been performed in exactly the same way as Feynman describes it in his 1963 Lectures on Quantum Mechanics. The illustration below shows how the interference pattern is being built up as the electrons go through the slit(s), one-by-one.


The challenge for us is to explain this interference pattern in terms of our electron model, which may be summarized in the illustration below, which we borrow from G. Vassallo and A. Di Tommaso (2019). It shows how the Compton radius of an electron must decrease as it gains linear momentum. Needless to say, the plane of oscillation of the pointlike charge is not necessarily perpendicular to the direction of motion. In fact, it is most likely not perpendicular to the line of motion, which explains why we write the de Broglie relation as a vector equation: λL = h/p. Such vector notation implies h and p can have different directions: h may not even have any fixed direction! It might wobble around in some regular or irregular motion itself!

Celani and Vassallo

The illustration shows that the Compton wavelength (the circumference of the circular motion becomes a linear wavelength as the classical velocity of the electron goes to c. It is now easy to derive the following formula for the de Broglie wavelength:de Broglie wavelengthThe graph below shows how the 1/γβ factor behaves: it is the green curve, which comes down from infinity (∞) to zero (0) as goes from 0 to c (or, what amounts to the same, if β goes from 0 to 1). Illogical? We do not think so: the classical momentum p in the λL = h/p is equal to zero when v = 0, so we have a division by zero. Also note the de Broglie wavelength approaches the Compton wavelength of the electron when v approaches c, and that 1/γβ factor quickly reaches reasonable values: for β = 0.2, for example, 1/γβ is equal to 5, more or less. For higher velocities, the de Broglie wavelength is just three or two times the Compton wavelength—or less. Of course, a = 0.2c velocity is substantial but not uncommon in such experiments.

de Broglie wavelength

These are remarkable relations, based on which it should be possible to derive what we refer to as the equivalent of the Huygens-Fresnel equations for electron interference.

Indeed, as far as we know, that has not been done yet. We are not quite sure if it can be done: an analysis of the interactions between the incoming electron and the electrons in the material of the slits must be hugely complicated, and we need to answer several difficult questions—first and foremost this: how does the pointlike charge – as opposed to the electromagnetic oscillation which keeps the charge in its orbit – go through the slit(s)? It must do so as a single blob—as opposed to the electromagnetic fields, which may or may not split up so as to produce the interference pattern.

What? May or may not split up? They should split up, right? Maybe. Maybe not. We are not so sure. We are not so sure. If we refer to interference in the context of two slits and diffraction when only one slit is open, then it is pretty obvious that the interference pattern that is produced when the two slits are open looks very much like the superposition of the two diffraction patterns that are produced by the electrons coming out of the individual slits. So, no, we do not buy the standard story here. Sorry.

So… What to say? We’ve got good ideas here—a good explanation but, in physics, the question is not (only) how but: how, exactly? The Zitterbewegung interpretation of an electron explains how diffraction and interference of an electron (with itself and/or with other electrons) might work but Zitterbewegung theorists still have some work to do to explain the how exactly. We think it can be done, however, and we therefore hope this post may inspire some smart students! The math is probably quite daunting, but then it is a rather nice PhD topic, isn’t it? And a decent quantitative explanation (as opposed to our qualitative explanation here) would sure make waves! 🙂

Post scriptum: We should, perhaps, also add a few remarks on some of the likely technicalities for the calculations. The shape of the wave combines the characteristics of transverse and longitudinal waves. It may, therefore, be very difficult to model this. The combination of linear and circular motion probably also involves some combination of plane, cylindrical and spherical wave geometry. In our paper on the geometric interpretation of de Broglie wavelength, we actually distinguished three different wavelength concepts which can be related through Menaechmuslatus rectum formula. To this, one should then add the intricacies of diffraction and interference.

Fortunately, there is a lot more quantitative analysis material now: this is a link to a good 2019 article which, in turn, has a good bibliography with links to many other good articles. I find the research by Frabboni, Gazzadi, Grillo and Pozzi particularly interesting. The point is: you are probably not going to produce a decent classical mathematical model of what’s actually going on overnight! 🙂 But it should be possible: the fact that this 1/γβ factor quickly reaches reasonable values, is very encouraging!

At the same time, one has to carefully relate scales and electron energies. The kinetic energy of the electrons in the Nebraska-Lincoln experiment was 600 eV only, so the electrons were quite slow (to accelerate electrons to a velocity of 0.2c, you need to apply something like 11,000 eV). Again, the analysis is not going to be easy, but if you want to be a physicist, you should surely try your hand at it! 🙂

Oh—one more thing: you will say this blog post is all about QED—as opposed to the stated objective of this blog. Well… You are right, of course, but then my thought processes are not exactly linear. 🙂