The book !

I just pre-published a very first draft on the usual site for independent thinkers. It still requires a lot of work – but I need to get back to my day job in the coming weeks and months, so don’t expect a second draft any time soon. 🙂 We’ll keep you updated on progress ! It’s sure not going to be a book like the others. Its working title is still the same: The Emperor has No Clothes: A Classical Explanation of Quantum Physics.

The whole idea is that a good electron and photon model can take all of the weirdness out of the QED sector of the Standard Model. What we’ve written so far, looks promising. Let’s see where it all goes ! 🙂

Advertisements

Chapter I…

As mentioned in my previous post, I am going to publish a book. The Emperor has No Clothes. This is the introduction. I am probably going to release the various chapters one by one for my readers here. Thanks for being there ! The working title of the book is still the same:

The Emperor has No Clothes

A classical interpretation of quantum mechanics

I. Introduction, history and acknowledgments

This book is the result of a long search for understanding. The journey started about thirty-five years ago when – I was a teenager then – I started reading popular physics books. Gribbin’s In Search of Schrödinger’s Cat is just one of the many that left me unsatisfied in my quest for knowledge.

However, my dad never pushed me and so I went the easy route: humanities, and economics – plus some philosophy and a research degree afterwards. Those rather awkward qualifications (for an author on physics, that is) have served me well – not only because I had a great career abroad, but also because I now realize that physics, as a science, is in a rather sorry state: the academic search for understanding has become a race to get the next nonsensical but conformist theory published.

Why do we want to understand? What is understanding? I am not sure, but my search was fueled by a discontent with the orthodox view that we will never be able to understand quantum mechanics “the way we would like to understand it”, as Richard Feynman puts it. Talking Feynman, I must admit his meandering Lectures are the foundation of my current knowledge, and the reference point from where I started to think for myself. I had been studying them on and off – an original print edition that I had found in a bookshop in Old Delhi – but it was really the 2012 Higgs-Englert experiments in CERN’s LHC accelerator, and the award of the Nobel prize to these two scientists, that made me accelerate my studies. It coincided with my return from Afghanistan – where I had served for five years – and, hence, I could afford to reorient myself. I had married a wonderful woman, Maria, who gave me the emotional and physical space to pursue this intellectual adventure.

I started a blog (readingfeynman.org) as I started struggling through it all – and that helped me greatly. I fondly recall that, back in 2015, Dr. Lloyd N. Trefethen from the Oxford Math Institute reacted to a post in which I had pointed out a flaw in one of Richard Feynman’s arguments. It was on a topic that had nothing to do with quantum mechanics – the rather mundane topic of electromagnetic shielding, to be precise – but his acknowledgement that Feynman’s argument was, effectively, flawed and that he and his colleagues had solved the issue in 2014 only (Chapman, Hewett and Trefethen, The Mathematics of the Faraday Cage) was an eye-opener for me. Trefethen concluded his email as follows: “Most texts on physics and electromagnetism, weirdly, don’t treat shielding at all, neither correctly nor incorrectly. This seems a real oddity of history given how important shielding is to technology.” This resulted in a firm determination to not take any formula for granted – even if they have been written by Richard Feynman! With the benefit of hindsight, I might say this episode provided me with the guts to question orthodox quantum theory.

The informed reader will now wonder: what do I mean with orthodox quantum theory? I should be precise here, and I will. It is the modern theory of quantum electrodynamics (QED) as established by Dyson, Schwinger, Feynman, Tomonaga and other post-World War II physicists. It’s the explanation of the behavior of electrons and photons – and their interactions – in terms of Feynman diagrams and propagators. I instinctively felt their theory might be incomplete because it lacks a good description of what electrons and photons actually are. Hence, all of the weirdness of quantum mechanics is now in this weird description of the fields – as reflected in the path integral formulation of quantum mechanics. Whatever an electron or a photon might be, we cannot really believe that it sort of travels along an infinite number of possible spacetime trajectories all over space simultaneously, can we?

I also found what Brian Hayes refers to as “the tennis match between experiment and theory” – the measurement (experiment) or calculation (theory) of the so-called anomalous magnetic moment – a rather weird business: the complexity in the mathematical framework just doesn’t match the intuition that, if the theory of QED has a simple circle group structure, one should not be calculating a zillion integrals all over space over 891 4-loop Feynman diagrams to explain the magnetic moment of an electron in a Penning trap. There must be some form factor coming out of a decent electron model that can explain it, right?

Of course, all of the above sounds very arrogant, and it is. However, I always felt I was in good company, because I realized that not only Einstein but the whole first generation of quantum physicists (Schrödinger, Dirac, Pauli and Heisenberg) had become skeptical about the theory they had created – if only because perturbation theory yielded those weird diverging higher-order terms. With the benefit of hindsight, we may say that the likes of Dyson, Schwinger, Feynman – the whole younger generation of mainly American scientists who dominated the discourse at the time – lacked a true general: they just kept soldiering on by inventing renormalization and other mathematical techniques to ensure those weird divergences cancel out, but they had no direction.

However, I should not get ahead of myself here. This is just an introduction, after all. Before getting to the meat of the matter, I should just make some remarks and acknowledge all the people who supported me in this rather lonely search. First, whom am I writing for? I am writing for people like me: amateur physicists. Not-so-dummies, that is. People who don’t shy away from calculations. People who understand a differential equation, some complex algebra and classical electromagnetism – all of which are, indeed, necessary, to understand anything at all in this field. I have good news for these people: I have come to the conclusion that we do not need to understand anything about gauges or propagators or Feynman diagrams to understand quantum electrodynamics.

Indeed, rather than “using his renormalized QED to calculate the one loop electron vertex function in an external magnetic field”, Schwinger should, perhaps, have listened to Oppenheimer’s predecessor on the Manhattan project, Gregory Breit, who wrote a number of letters to both fellow scientists as well as the editors of the Physical Review journal suggesting that the origin of the so-called discrepancy might be due to an ”intrinsic magnetic moment of the electron of the order of αµB.” In other words, I do not think Breit was acting schizophrenic when complaining about the attitude of Kusch and Lamb when they got the 1955 Nobel Prize for Physics for their work on the anomalous magnetic moment. I think he was just making a very sensible suggestion – and that is that one should probably first try investing in a good theory of the electron before embarking on mindless quantum field calculations.

My search naturally led me to the Zitterbewegung hypothesis. Zitter is German for shaking or trembling. It refers to a presumed local oscillatory motion – which I now believe to be true, whatever that means. Erwin Schrödinger found this Zitterbewegung as he was exploring solutions to Dirac’s wave equation for free electrons. In 1933, he shared the Nobel Prize for Physics with Paul Dirac for “the discovery of new productive forms of atomic theory”, and it is worth quoting Dirac’s summary of Schrödinger’s discovery:

“The variables give rise to some rather unexpected phenomena concerning the motion of the electron. These have been fully worked out by Schrödinger. It is found that an electron which seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high and its amplitude is so small. But one must believe in this consequence of the theory, since other consequences of the theory which are inseparably bound up with this one, such as the law of scattering of light by an electron, are confirmed by experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 1933)

Dirac obviously refers to the phenomenon of Compton scattering of light by an electron. Indeed, as we shall see, the Zitterbewegung model naturally yields the Compton radius of an electron and – as such – effectively provides some geometric explanation of what might be happening. It took me a while to figure out that some non-mainstream physicists had actually continued to further explore this concept, and the writings of David Hestenes from the Arizona State University of Arizona who – back in 1990 – proposed a whole new interpretation of quantum mechanics based on the Zitterbewegung concept (Hestenes, 1990, The Zitterbewegung Interpretation of Quantum Mechanics) made me realize there was sort of a parallel universe of research out there – but it is not being promoted by the likes of MIT, Caltech or Harvard University – and, even more importantly, their friends who review and select articles for scientific journals.

I reached out to Hestenes, but he is 85 by now – and I don’t have his private email, so I never got any reply to the one or two emails I sent him on his ASU address. In contrast, Giorgio Vassallo – one of the researchers of an Italian group centered around Francesco Celani – who followed up on the Schrödinger-Hestenes zbw model of an electron – politely directed me towards Dr. Alex Burinskii (I should have put a Prof. and/or Dr. title in front of every name mentioned above, because they all are professors and/or doctors in science). Both have been invaluable – not because they would want to be associated with any of our ideas – but because they gave me the benefit of the doubt in their occasional but consistent communications. Hence, I would like to thank them here for reacting and encouraging me for at least trying to understand.

I think Mr. Burinskii deserves a Nobel Price, but he will probably never get one – because it would question not one but two previously awarded Nobel Prizes (1955 and 1965). We feel validated because, in his latest communication, Dr. Burinskii wrote he takes my idea of trying to corroborate his Dirac-Kerr-Newman electron model by inserting it into models that involve some kind of slow orbital motion of the electron – as it does in the Penning trap – seriously. [He is working on an article right now, and I am sure it is going to take a lot of people out of their comfort zone – which is always a good thing.]

It is now time to start the book. However, before we do so, I should wrap up the acknowledgments section, so let us do that here. I have also been in touch with Prof. Dr. John P. Ralston, who wrote one of a very rare number of texts that, at the very least, tries to address some of the honest questions of amateur physicists and philosophers upfront. I was not convinced by his interpretation of quantum mechanics, but I loved the self-criticism of the profession: “Quantum mechanics is the only subject in physics where teachers traditionally present haywire axioms they don’t really believe, and regularly violate in research.” We exchanged some messages, but then concluded that our respective interpretations of the wavefunction are very different and, hence, that we should not “waste any electrons” (his expression) on trying to convince each other. In the same vein, I should mention some other seemingly random exchanges – such as those with the staff and fellow students when going through the MIT’s edX course on quantum mechanics which – I admit – I did not fully complete because, while I don’t mind calculations in general, I do mind mindless calculations.

I am also very grateful to my brother, Prof. Dr. Jean Paul Van Belle, for totally unrelated discussions on his key topic of research (which is information systems and artificial intelligence), which included discussions on Roger Penrose’s books – mainly The Emperor’s New Mind and The Road to Reality. These discussions actually provided the inspiration for the earlier draft title of this book: The Emperor has no clothes: the sorry state of Quantum Physics. We will go for another mountainbike or mountain-climbing adventure when this project is over.

Among other academics, I would like to single out Dr. Ines Urdaneta. Her independent research is very similar to ours. She has, therefore, provided much-needed moral support and external validation. We also warmly thank Jason Hise, whose wonderful animations of 720-degree symmetries did not convince me that electrons – as spin-1/2 particles – actually have such symmetries – but whose communications stimulated my thinking on the subject-object relation in quantum mechanics.

Finally, I would like to thank all of my friends (my university friends, in particular (loyal as ever), and I will also single out Soumaya Hasni, who has provided me with a whole new fan club here here in Brussels) and, of course, my family, for keeping me sane. I would like to thank, in particular, my children – Hannah and Vincent – and my wife, Maria, for having given me the emotional, intellectual and financial space to grow into the person I am right now.

So, now we should really start the book. Its structure is simple. In the first chapters, I’ll just introduce the most basic math – Euler’s function, basically – and then we’ll take it from there. I will regularly refer to a series of papers I published on what I refer to as the Los Alamos Site for Spacetime Rebels: vixra.org. The site is managed by Phil Gibbs. I would like to acknowledge and thank him here for providing a space for independent thinkers. You can find my papers on http://vixra.org/author/jean_louis_van_belle. They are numbered, and I will often refer to those papers by mentioning their number between square brackets. In fact, this very first version of this book follows the structure of paper [17]. Click on the link above, have a look, and you’ll understand. 😊

Or so I hope. This brings me to the final point in my introduction. This is just the first version of this book. It is rather short – cryptic, I’d say. As such, you might give up after a few pages and say: this may be a classical interpretation but it is not an easy one. You are right. But let me say two things to you:

  1. It may not be easy, but it is definitely easier than whatever else you’ll read when exploring the more serious stuff.
  2. To get my degree in philsophy, I had to study Wittgenstein’s Tractatus Logico-Philosophicus. I hated that booklet – not because it is dense but because it is nonsense. Wittgenstein wasn’t even aware of the scientific revolution that was taking place while he was writing it. Still, it became a bestseller. Why? Because it was so abstruse it made people think for themselves.

The first version of this book is going to be dense but – hopefully – you will find it is full of sense. If so (I’ll find out from the number of copies sold), I might go through the trouble of unpacking it in the second edition. 🙂

Jean Louis Van Belle,  7 January 2019

[START OF THE BOOK]

[FIRST CHAPTERS: EXPLAIN EULER’S FORMULA AND BASIC THEORY.]

[OTHER CHAPTERS: SEE VIXRA.ORG]

My new book project

Dear readers of this blog – As you may or may not know, I had already published two or three books on amazon.com with some of the ideas on the geometric of physical interpretation of the wavefunction that I have been promoting on this blog. These books sold some copies but – all in all – were not a huge success. That’s fine – because I just wanted to try things out.

I will soon come up with an entirely new book. Its working title is what is mentioned in the current draft of the acknowledgments – copied below. The e-book will be published in a few weeks from now. It may – by some magic 🙂 – coincide with the publication of a convincing classical explanation of the anomalous magnetic moment of an electron – not written by me, of course, but by one of the foremost experts on quantum gravity (and QED in general). 🙂 It would upset the orthodox/mainstream/Copenhagen interpretation of quantum electrodynamics, and that will be a good thing: it will bring more reality to the interpretation (read: just a much easier way to truly understand everything).

If so, my book should sell – if only because it will document a history of scientific discovery. 🙂

The Emperor has no clothes:

The sorry state of Quantum Physics.

Acknowledgements

Although Dr. Alex Burinskii, Dr. Giorgio Vassallo and Dr. Christoph Schiller would probably prefer not to be associated with anything we write, they gave us the benefit of the doubt in their occasional, terse, but consistent communications and, hence, we would like to thank them here – not for believing in anything we write but for encouraging us for at least trying to understand.

More importantly, they made me realize that QED, as a theory, is probably incomplete: it is all about electrons and photons, and the interactions between the two – but the theory lacks a good description of what electrons and photons actually are. Hence, all of the weirdness of Nature is now, somehow, in this weird description of the fields: perturbation theory, gauge theories, Feynman diagrams, quantum field theory, etcetera. This complexity in the mathematical framework does not match the intuition that, if the theory has a simple circle group structure[1], one should not be calculating a zillion integrals all over space over 891 4-loop Feynman diagrams to explain the magnetic moment of an electron in a Penning trap.[2] We feel validated because, in his latest communication, Dr. Burinskii wrote he takes our idea of trying to corroborate his Dirac-Kerr-Newman electron model by inserting it into models that involve some kind of slow orbital motion of the electron – as it does in the Penning trap – seriously.[3]

There are some more professors who may or may not want to be mentioned but who have, somehow, been responsive and, therefore, encouraging. I fondly recall that, back in 2015, Dr. Lloyd N. Trefethen from the Oxford Math Institute reacted to a blog article on mine[4] – in which I pointed out a potential flaw in one of Richard Feynman’s arguments. It was on a totally unrelated topic – the rather mundane topic of shielding, to be precise – but his acknowledgement that Feynman’s argument was, effectively, flawed and that he and his colleagues had solved the issue in 2014 only (Chapman, Hewett and Trefethen, The Mathematics of the Faraday Cage) was an eye-opener for me. Trefethen concluded his email as follows: “Most texts on physics and electromagnetism, weirdly, don’t treat shielding at all, neither correctly nor incorrectly. This seems a real oddity of history given how important shielding is to technology.” When I read this, it made me think: how is it possible that engineers, technicians, physicists just took these equations for granted? How is it possible that scientists, for almost 200 years,[5], worked with a correct formula based on the wrong argument? This, too, resulted in a firm determination to not take any formula for granted but re-visit its origin instead.[6]

We have also been in touch with Dr. John P. Ralston, who wrote one of a very rare number of texts that address the honest questions of amateur physicists and philosophers upfront. I love the self-criticism of the profession: “Quantum mechanics is the only subject in physics where teachers traditionally present haywire axioms they don’t really believe, and regularly violate in research.”[7] We both concluded that our respective interpretations of the wavefunction are very different and, hence, that we should not  waste any electrons on trying to convince each other. However, the discussions were interesting.

I am grateful to my brother, Dr. Jean Paul Van Belle, for totally unrelated discussions on his key topic of research (which is information systems and artificial intelligence), which included discussions on Roger Penrose’s books – mainly The Emperor’s New Mind and The Road to Reality. These books made me think of a working title for the book: The Emperor has no clothes: the sorry state of Quantum Physics. We should go for another mountainbike or mountain-climbing adventure when this project is over.

Among other academics, I would like to single out Dr. Ines Urdaneta who – benefiting from more academic freedom than other researchers, perhaps – has just been plain sympathetic and, as such, provided great moral support. I also warmly thank Jason Hise, whose wonderful animations of 720-degree symmetries did not convince me that electrons (or spin-1/2 particles in general) actually have such symmetries – but whose communications stimulated my thinking on the subject-object relation in quantum mechanics.

Finally, I would like to thank all my friends and my family for keeping me sane. I would like to thank, in particular, my children – Hannah and Vincent – and my wife, Maria, for having given me the emotional, intellectual and financial space to pursue this intellectual adventure.

[1] QED is an Abelian gauge theory with the symmetry group U(1). This sounds extremely complicated – and it is. However, it can be translated as: its mathematical structure is basically the same as that of classical electromagnetics.

[2] We refer to the latest theoretical explanation of the anomalous magnetic moment here: Stefano Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED, 10 July 2017, https://arxiv.org/abs/1704.06996.

[3] Prof. Dr. Burinskii, email communication, 29 December 2018 2.13 pm (Brussels time). To be precise, he just wrote me to say he is ‘working on the magnetic moment’. I interpret this as saying he is looking at his model again to calculate the magnetic moment of the Dirac-Kerr-Newman electron so we will be in a position to show how the Kerr-Newman geometry – which I refer to as the (neglected) form factor in QED – might affect it. To be fully transparent, Dr. Burinskii made it clear his terse reactions do not amount to any endorsement or association of the ideas expressed in this and other papers. It only amounts to an admission our logic may have flaws but no fatal errors – not at first reading, at least.

[4] Jean Louis Van Belle, The field from a grid, 31 August 2015, https://readingfeynman.org/2015/08/.

[5] We should not be misunderstood here: the formulas – the conclusions – are fully correct, but the argument behind was, somehow, misconstrued. As Faraday performed his experiment with a metal mesh (instead of a metal shell) in 1836, we may say it took mankind 2014 – 1836 = 178 years to figure this out. In fact, the original experiments on Faraday’s cage were done by Benjamin Franklin – back in 1755, so that is 263 years ago!

[6] We reached out to Dr. Trefethen and some of his colleagues again to solicit comments on our more recent papers, but we received no reply. Only Dr. André Weideman wrote us back saying that this was completely out of his field and that he would, therefore, not invest in it.

[7] John P. Ralston, How to understand quantum mechanics (2017), p. 1-10.

The Emperor has no clothes…

Hi guys (and ladies) – I should copy the paper into this post but… Well… That’s rather tedious. :-/ The topic is one that is of interest of you. You’re looking for a classical explanation of the anomalous magnetic moment, right? Well… We don’t have one – but we’re pretty sure this paper has all the right ingredients for one. We also designed a test for it. Also check out my other paper on the fine-structure constant. It explains everything.

Everything? Well… Almost everything. 🙂 The Revolution has started. The (quantum-mechanical) Emperor seems to have no clothes. 🙂

I am damn serious. This is what I wrote on my FB page today:

The only thing I can be proud of this year is a series of papers on quantum math. I will probably turn them into a popular book on physics. Its working title is “The Emperor Has No Clothes !” Indeed – if anything – these papers show that a lot of the highbrow stuff is just unnecessary complexity or deliberate hyping up of models that can be simplified significantly.

Worse, through my interactions with some physicists, I found some serious research into the nature of matter and energy is being neglected or ignored just because it challenges the Copenhagen interpretation of quantum physics. Most papers of Alexander Burinskii, for example, a brilliant physicist who developed a very plausible model of an electron, have been re-classified from ‘quantum physics’ to ‘general physics’ – which means no one will read them. Worse, he has had trouble just getting stuff published over the last four years! It’s plain censorship! 

I now summarize the Copenhagen interpretation as: “Calculate, don’t think !”  It’s a Diktatur, really! And I now also understand why the founding fathers of quantum mechanics (Dirac, Heisenberg, Pauli, Schroedinger,…) thought the theory they helped to create didn’t quite make the cut. It’s going to be a sad story to tell. In fact, I think Burinskii is in trouble because his model may show that a lot of the research on the anomalous magnetic moment is plain humbug – but so that got some people a Nobel Prize in 1955 and it’s popularly referred to as the ‘high-precision test’ of QED, so… Well… I looked at it too, and for quite a long time, and I’ve come to the conclusion that it’s plain nonsense – but so that cannot be said.

Hmm… If the state of physics is so poor, then we should not be surprised that we are constantly being misled in other fields as well. Let us remember Boltzmann:

“Bring forth what is true. Write it so it it’s clear. Defend it to your last breath.”

Oh – and I have a sort of classical explanation for what happens in the one-photon Mach-Zehnder experiment too. Check it out here. Quantum mechanics is not a mystery. Mr. Bell has got it all wrong. 🙂

Kind regards – JL

Call to Arms

Sent: Thursday, December 20, 2018 12:59 PM
To: All Rebels
Subject: The Manifesto for the Revolution

Dear All – Thanks for the bilateral exchanges. It is time to bring all spacetime rebels together in this Quest. The Mother Ship is not moving anymore. Orthodox quantum mechanics is broken beyond repair. We know why: it is because of the academic brain freeze – the Heisenberg Diktatur on how we should think about quantum mechanics. We need to build our own spacecraft to venture out to the New Universe. It should be small and nimble.

The Seeds of the Revolution have started to grow. They are the following:

1. The + or – sign in front of the argument of the wavefunction has a meaning. It’s a degree of freedom in the mathematical description that has not been exploited by physicists. If we want to give it a meaning, then it’s probably the spin direction. It is plain weird that we need the concept of spin in all of our discussions and models on quantum physics but that the Founding Fathers of Quantum Mechanics chose to limit the power of Euler’s function to describe a spin-zero particle only.

Once we acknowledge that, all these weird symmetries (720-degree symmetry for spin-1/2) disappear, so there is no ‘excuse’ anymore to not think about a geometric/physical interpretation of the wavefunction. That should trigger a new burst of creative thinking. For starters, we’ll have a different interpretation of Schrödinger’s wave equation. In fact, I would dare to say that, for the first time, we will actually have a (geometric) interpretation of Schrödinger’s wave equation (and its solutions – the orbitals – of course).

2. The difference between the g-factor for spin versus orbital momentum (2 versus 1) can easily be explained by a form factor. If we think of the (free) electron as some disk-like structure (a two-dimensional oscillation, that is), then we’ll have a ½ factor in the formula for its angular momentum and the ‘mystery’ is solved. The anomalous magnetic moment is then not anomalous anymore: it’s just a coupling between the spin and orbital angular momentum that occurs because of the Larmor precession.

Schwinger’s α/2π factor says it all here: if the fine-structure constant is just a dimensional scaling factor explaining the disk-like shape of the (free) electron, then we would expect to see it pop up in some form in the final equations for the motion of real-life electron, which combines orbital motion, Larmor precession (just the effect of magnetism) and spin. I’ve re-written my paper on the anomalous magnetic moment in this sense (it’s on the Los Alamos pre-publishing site for rebels) – but I need to do so more work on it. These motions are complicated and to get the coupling factor, we can – unfortunately – not just superpose motions: there is only one value for the magnetic field vector and the magnetic moment/angular momentum of the whole thing (i.e. the real-life (disk-like) electron moving in this complicated orbital). So, yes, the result is beautiful but it is going to be tough to go through the motions – literally. 🙂

3. Interference and diffraction – stuff like the Mach-Zehner experiment – should be explained the way one would usually explain diffraction and interference: if we are going to force a wave through a slit or an aperture, the wave shape is going to change. We need to distinguish between linear and circular polarization ‘states’ – which become real states here! And we should think about how plane waves become spherical waves when they go through an aperture. I think a photon is a circularly polarized wave, but when it goes through the beam splitter, it might be broken up in two linearly polarized waves – each going in a different direction (to the top or, alternatively, to the bottom mirror). If one of them finds its way blocked, it will – somehow – rejoin the other direction (it might just bounce back, right?). Weak measurement shows there is something there. Weak measurement shows the idea of an amplitude is real. It’s not just a mathematical thing. We just need to do some hard thinking on wave shapes and form factors.

We’re not challenging any basic results of quantum mechanics here. We’re just challenging the standard Copenhagen interpretation, which is – basically – that we should not even try to understand what’s going on.

I have a lot of crazy followers on my physics blog (https://readingfeynman.org/). I am going to re-direct them another site – which I really wanted to reserve for the truly crazy ideas (https://readingeinstein.blog/).

On-on ! Let’s honor the Spirit of Ludwig Boltzmann: “Bring forth what is true. Write it so it’s clear. Defend it to your last breath.”

I would add: Please enjoy while doing so! 😊

Dōgen

Enter the void…

I woke up this morning with an inspiring idea. I wrote it on my Facebook page. It is this:

Turbulence… This animation (https://www.youtube.com/watch?v=C680Zz7MyP) has been made by another passenger on this spaceship. We’re traveling into a new Universe. We’re not re-writing the laws of physics. We’re re-writing the way they are written. We have a new language. It’s been a very lonely trip. We’re just a small band of travelers, and the big guns out there don’t like us. All those professors who tell us our ideas look good but that we should not try to challenge the current academic brain freeze… We have only one answer to the skepticism: our ship is small, but it moves. Your ships are big – but they’ve been frozen in time ever since the imposition of the Heisenberg Diktatur. Onwards ! I have a set of papers on the Los Alamos safe haven for rebels that encompasses virtually everything that needs to be explained: the anomalous magnetic moment, Mach-Zehnder interference, Einstein’s E = mc2 equation itself, the spin form factor,… The seeds of the Revolution have been sown.

Because my Reading Feynman site has become very crowded with posts and pages, I will use this one to relaunch. It was supposed to be a site on Einstein – but I hope He is with us in Spirit. 🙂

Jean Louis Van Belle, 20 December 2018

PS: For some reason, WordPress blocks the YouTube link. Just cut and paste the address in your browser. It’s worth it. 🙂

 

Do we need mass?

You’ll say: of course, we do! Not too much of it, of course, but some mass is good, right? 🙂 Well… I guess so. Let me rephrase my question: do we need the concept of mass in theoretical physics?

Huh? I must be joking, right? No. It’s a serious question. Most of my previous posts revolved around the concept of mass. What is mass? What’s the meaning of Einstein’s E = m·c2 formula? If you’re read any of my previous posts, you’ll know that I am thinking of mass now as some kind of oscillation – not (or not only) in spacetime, but an oscillation of spacetime. A two-dimensional oscillation, to be precise. So… Well… If mass is an oscillation of something, then it’s energy: some force over some distance. Hence, it is only logical to ask whether we need the concept of mass at all.

Think of it. The E = m·c2 relates two variables only. It’s not like a force law or something. No. It says we can express mass in terms of energy units, and vice versa. In fact, if we’d use natural units for time and distance, so c = 1, the E = m·c2 formula reduces to E = m. So the energy concept is good enough, right? Instead of measuring the mass of our objects in kg, we’ll measure them in joule or – for small objects – in electronvolt. To be precise, we should say: we’ll measure them in J/c2, or in eV/c2. In fact, physicists do that already – for stuff at the atomic or sub-atomic scale, which is… Well… Most of what they write about, right? 🙂

If you think about this for a while, you might object to this by saying we need the mass concept in a lot of other formulas and laws, such as Newton’s Law: F = m·a. But that’s not very valid as an objection: we can still replace the m in this formula by E/c2, and we’re done, right? So Newton’s Law would look like this: F = (E/c2a. You may say: this doesn’t look as nice. But looks shouldn’t matter here, right? 🙂

Because you’re so used to using mass, you might say: mass is a measure of inertia (resistance to a change in motion), so that its meaning. Well… Yes and no. What Newton’s Law actually tells us is that there is a proportionality between (1) the force on an object, and (2) its acceleration. And that proportionality coefficient is m, so we should re-write Newton’s Law as F/a = m. But then… Well… We can just use something else, right. Why m? We can just write: F/a = E/c2. 🙂

You think I am joking, right? We surely need it somewhere, no? Well… No. Or… Well… I am not so sure, let’s say. 🙂 Think of the following. I don’t need to know the mass of an object to calculate the acceleration. I only need to know its trajectory in spacetime. In other words: I just need to know when it’s where. Huh? Yes. Think of the formulas you learned in high school: the distance traveled by an object with acceleration a is given by = (1/2)·a·t2. Hence, = 2·s/t2. I don’t need to know the mass. I can calculate the acceleration = 2·s/t2 from the time and distance traveled, and then – if I would be interested in that coefficient (m) – then I know m will be equal to m = F/a. But so it’s just a coefficient of proportionality. Nothing more, nothing less.

Oh! But what if you don’t know F? Then you need the mass to calculate F, right? Well… No. I need to know the kinetic energy of the object, or its momentum, or whatever else. I don’t need that enigmatic mass concept. That’s metaphysics, so that’s philosophy. Not physics. 🙂

Huh? Are you serious? 

I actually am. Einstein’s formula tells us we really don’t need the concept of mass anymore. E/c2 is just as good as a measure of inertia, and we can use the same E/c2 in the gravitational law or in whatever other law or formula involving m. So much for the kg unit as a so-called fundamental unit in the S.I. system of units: they should scrap it. 🙂

And too bad I spent so much time (see all my previous posts) on an innovative theory of mass… 🙂

[…]

Now that we’re talking fundamental units and concepts, let me give you something else to think about. In the table below, I have a force (F) over some distance (s) during some time (t). As you know, the product of a force, time and distance is the total amount of action (Wirkung). Action is the physical dimension of Planck’s constant, which is the quantum of action. The concept of action is one that, unfortunately, is not being taught in high schools: it only pops up in more advanced (read: more abstract) texts (if you’re interested, check my post on it). Why is that unfortunate? Well… I think it’s really interesting because it answers a question I had as a high school student: why do we need two conservation laws? One for energy and one for momentum? What I write below might explain it: the action concept is a higher-level concept that combines energy as well as momentum – sort of, that is. 🙂 Check it out.

The table below shows that the same amount of action (1000 N·m·s) over the same distance (10 meter in this case) – but with different force and time (see below) – will result in the same momentum (100 N·s). In contrast, the same amount of action (1000 N·m·s) over the same time (5 seconds) – but with a different force over a different distance – will result in the same (kinetic) energy (200 N·m = 200 J).

action

So… Well… I like to think that (kinetic) energy and (linear) momentum are two manifestations of action – two sides of the same coin, so to speak:

  1. The concept of momentum sort of abstracts away from distance: it’s a projection of action on the time axis, so to speak.
  2. In contrast, energy abstracts away from the concept of time: it’s a projection of some amount of action in space.

Conversely, action can be thought of as (1) energy being available over a specific amount of time or, alternatively, as (2) a certain amount of momentum being available over a specific distance.

OK. That’s it for today. I hope you enjoyed it!

Post scriptum: In case you wonder, I do know about the experimental verification of the so-called Higgs field in CERN’s LHC accelerator six years ago (July 2012), and the award of the Nobel prize to the scientists who had predicted its existence (including Peter Higgs and François Englert). As far as I understand the Higgs theory (I don’t know a thing about it, actually), I note mass is being interpreted as some scalar field. I am sure there must be something about it that I am not catching here. 🙂