Ontology and physics

One sometimes wonders what keeps amateur physicists awake. Why is it that they want to understand quarks and wave equations, or delve into complicated math (perturbation theory, for example)? I believe it is driven by the same human curiosity that drives philosophy. Physics stands apart from other sciences because it examines the smallest of smallest – the essence of things, so to speak.

Unlike other sciences (the human sciences in particular, perhaps), physicists also seek to reduce the number of concepts, rather than multiply them – even if, sadly, enough, they do not always a good job at that. However, generally speaking, physics and math may, effectively, be considered to be the King and Queen of Science, respectively.

The Queen is an eternal beauty, of course, because Her Language may mean anything. Physics, in contrast, talks specifics: physical dimensions (force, distance, energy, etcetera), as opposed to mathematical dimensions – which are mere quantities (scalars and vectors).

Science differs from religion in that it seeks to experimentally verify its propositions. It measures rather than believes. These measurements are cross-checked by a global community and, thereby, establish a non-subjective reality. The question of whether reality exists outside of us, is irrelevant: it is a category mistake (Ryle, 1949). It is like asking why we are here: we just are.

All is in the fundamental equations. An equation relates a measurement to Nature’s constants. Measurements – energy/mass, or velocities – are relative. Nature’s constants do not depend on the frame of reference of the observer and we may, therefore, label them as being absolute. This corresponds to the difference between variables and parameters in equations. The speed of light (c) and Planck’s quantum of action (h) are parameters in the E/m = c2 and E = hf, respectively.

Feynman (II-25-6) is right that the Great Law of Nature may be summarized as U = 0 but that “this simple notation just hides the complexity in the definitions of symbols is just a trick.” It is like talking of the night “in which all cows are equally black” (Hegel, Phänomenologie des Geistes, Vorrede, 1807). Hence, the U = 0 equation needs to be separated out. I would separate it out as:

We imagine things in 3D space and one-directional time (Lorentz, 1927, and Kant, 1781). The imaginary unit operator (i) represents a rotation in space. A rotation takes time. Its physical dimension is, therefore, s/m or -s/m, as per the mathematical convention in place (Minkowski’s metric signature and counter-clockwise evolution of the argument of complex numbers, which represent the (elementary) wavefunction).

Velocities can be linear or tangential, giving rise to the concepts of linear versus angular momentum. Tangential velocities imply orbitals: circular and elliptical orbitals are closed. Particles are pointlike charges in closed orbitals. We are not sure if non-closed orbitals might correspond to some reality: linear oscillations are field particles, but we do not think of lines as non-closed orbitals: the curvature of real space (the Universe we live in) suggest we should but we are not sure such thinking is productive (efforts to model gravity as a residual force have failed so far).

Space and time are innate or a priori categories (Kant, 1781). Elementary particles can be modeled as pointlike charges oscillating in space and in time. The concept of charge could be dispensed with if there were not lightlike particles: photons and neutrinos, which carry energy but no charge. The pointlike charge which is oscillating is pointlike but may have a finite (non-zero) physical dimension, which explains the anomalous magnetic moment of the free (Compton) electron. However, it only appears to have a non-zero dimension when the electromagnetic force is involved (the proton has no anomalous magnetic moment and is about 3.35 times smaller than the calculated radius of the pointlike charge inside of an electron). Why? We do not know: elementary particles are what they are.

We have two forces: electromagnetic and nuclear. One of the most remarkable things is that the E/m = c2 holds for both electromagnetic and nuclear oscillations, or combinations thereof (superposition theorem). Combined with the oscillator model (E = ma2ω2 = mc2 and, therefore, c must be equal to c = aω), this makes us think of c2 as modeling an elasticity or plasticity of space. Why two oscillatory modes only? In 3D space, we can only imagine oscillations in one, two and three dimensions (line, plane, and sphere). The idea of four-dimensional spacetime is not relevant in this context.

Photons and neutrinos are linear oscillations and, because they carry no charge, travel at the speed of light. Electrons and muon-electrons (and their antimatter counterparts) are 2D oscillations packing electromagnetic and nuclear energy, respectively. The proton (and antiproton) pack a 3D nuclear oscillation. Neutrons combine positive and negative charge and are, therefore, neutral. Neutrons may or may not combine the electromagnetic and nuclear force: their size (more or less the same as that of the proton) suggests the oscillation is nuclear.  

 2D oscillation3D oscillation
electromagnetic forcee± (electron/positron)orbital electron (e.g.: 1H)
nuclear forceμ± (muon-electron/antimuon)p± (proton/antiproton)
compositepions (π±/ π0)?n (neutron)? D+ (deuteron)?
corresponding field particleγ (photon)ν (neutrino)

The theory is complete: each theoretical/mathematical/logical possibility corresponds to a physical reality, with spin distinguishing matter from antimatter for particles with the same form factor.

When reading this, my kids might call me and ask whether I have gone mad. Their doubts and worry are not random: the laws of the Universe are deterministic (our macro-time scale introduces probabilistic determinism only). Free will is real, however: we analyze and, based on our analysis, we determine the best course to take when taking care of business. Each course of action is associated with an anticipated cost and return. We do not always choose the best course of action because of past experience, habit, laziness or – in my case – an inexplicable desire to experiment and explore new territory.

PS: I’ve written this all out in a paper, of course. 🙂 I also did a 30 minute YouTube video on it. Finally, I got a nice comment from an architect who wrote an interesting paper on wavefunctions and wave equations back in 1996 – including thoughts on gravity.

Form and substance

Philosophers usually distinguish between form and matter, rather than form and substance. Matter, as opposed to form, is then what is supposed to be formless. However, if there is anything that physics – as a science – has taught us, is that matter is defined by its form: in fact, it is the form factor which explains the difference between, say, a proton and an electron. So we might say that matter combines substance and form.

Now, we all know what form is: it is a mathematical quality—like the quality of having the shape of a triangle or a cube. But what is (the) substance that matter is made of? It is charge. Electric charge. It comes in various densities and shapes – that is why we think of it as being basically formless – but we can say a few more things about it. One is that it always comes in the same unit: the elementary charge—which may be positive or negative. Another is that the concept of charge is closely related to the concept of a force: a force acts on a charge—always.

We are talking elementary forces here, of course—the electromagnetic force, mainly. What about gravity? And what about the strong force? Attempts to model gravity as some kind of residual force, and the strong force as some kind of electromagnetic force with a different geometry but acting on the very same charge, have not been successful so far—but we should immediately add that mainstream academics never focused on it either, so the result may be commensurate with the effort made: nothing much.

Indeed, Einstein basically explained gravity away by giving us a geometric interpretation for it (general relativity theory) which, as far as I can see, confirms it may be some residual force resulting from the particular layout of positive and negative charge in electrically neutral atomic and molecular structures. As for the strong force, I believe the quark hypothesis – which basically states that partial (non-elementary) charges are, somehow, real – has led mainstream physics into the dead end it finds itself in now. Will it ever get out of it?

I am not sure. It does not matter all that much to me. I am not a mainstream scientist and I have the answers I was looking for. These answers may be temporary, but they are the best I have for the time being. The best quote I can think of right now is this one:

‘We are in the words, and at the same time, apart from them. The words spin out, spin us out, over a void. There, somewhere between us, some words form some answer for some time, allowing us to live more fully in the forgetting face of nonexistence, in the dissolving away of each other.’ (Jacques Lacan, in Jeremy D. Safran (2003), Psychoanalysis and Buddhism: an unfolding dialogue, p. 134)

That says it all, doesn’t it? For the time being, at least. 🙂

Post scriptum: You might think explaining gravity as some kind of residual electromagnetic force should be impossible, but explaining the attractive force inside a nucleus behind like charges was pretty difficult as well, until someone came up with a relatively simple idea based on the idea of ring currents. 🙂