The physics of the wavefunction

The rather high-brow discussions on deep electron orbitals and hydrinos with a separate set of interlocutors, inspired me to write a paper at the K-12 level on wave equations. Too bad Schroedinger did not seem to have left any notes on how he got his wave equation (which I believe to be correct in every way (relativistically correct, too), unlike Dirac’s or others).

The notes must be somewhere in some unexplored archive. If there are Holy Grails to be found in the history of physics, then these notes are surely one of them. There is a book about a mysterious woman, who might have inspired Schrödinger, but I have not read it, yet: it is on my to-read list. I will prioritize it (read: order it right now).

Oh – as for the math and physics of the wave equation, you should also check the Annex to the paper: I think the nuclear oscillation can only be captured by a wave equation when using quaternion math (an extension to complex math).

A simple explanation of quantum-mechanical operators

I added an Annex to a paper that talks about all of the fancy stuff quantum physicists like to talk about, like scattering matrices and high-energy particle events. The Annex, however, is probably my simplest and shortest summary of the ordinariness of wavefunction math, including a quick overview of what quantum-mechanical operators actually are. It does not make use of state vector algebra or the usual high-brow talk about Gilbert spaces and what have you: you only need to know what a derivative is, and combine it with our realist interpretation of what the wavefunction actually represents.

I think I should do a paper on the language of physics. To show how (i) rotations (i, j, k), (ii) scalars (constants or just numerical values) and (iii) vectors (real vectors (e.g. position vectors) and pseudovectors (e.g. angular frequency or momentum)), and (iv) operators (derivatives of the wavefunction with respect to time and spatial directions) form ‘words’ (e.g. energy and momentum operators), and how these ‘words’ then combine into meaningful statements (e.g. Schroedinger’s equation).

All of physics can then be summed up in a half-page or so. All the rest is thermodynamics. 🙂

PS: You only get collapsing wavefunctions when adding uncertainty to the models (i.e. our own uncertainty about the energy and momentum). The ‘collapse’ of the wavefunction (let us be precise, the collapse of the (dissipating) wavepacket) thus corresponds to the ‘measurement’ operation. 🙂

PS2: Incidentally, the analysis also gives an even more intuitive explanation of Einstein’s mass-energy equivalence relation, which I summarize in a reply to one of the many ‘numerologist’ physicists on ResearchGate (copied below).

The geometry of the matter-wave

Yesterday, I was to talk for about 30 minutes to some students who are looking at classical electron models as part of an attempt to try to model what might be happening to an electron when moving through a magnetic field. Of course, I only had time to discuss the ring current model, and even then it inadvertently turned into a two-hour presentation. Fortunately, they were polite and no one dropped out—although it was an online Google Meet. In fact, they reacted quite enthusiastically, and so we all enjoyed it a lot. So much that I adjusted the presentation a bit the next morning (which added even more time to it unfortunately) so as to add it to my YouTube channel. So this is the link to it, and I hope you enjoy it. If so, please like it—and share it! 🙂

Oh! Forgot to mention: in case you wonder why this video is different than others, see my Tweet on Sean Carroll’s latest series of videos hereunder. That should explain it.

Sean Carroll

Post scriptum: I got the usual question, of course: if an electron is a ring current, then why doesn’t it radiate its energy away? The easy answer is: an electron is an electron and it doesn’t—for the same reason that an electron in an atomic orbital or a Cooper pair in a superconducting loop of current does not radiate energy away. The more difficult answer is a bit mysterious: it has got to do with flux quantization and, most importantly, with the Planck-Einstein relation. I cannot be too long here (this is just a footnote in a blog post) but the following elements should be noted:

1. The Planck-Einstein law embodies a (stable) wavicle: a wavicle respects the Planck-Einstein relation (E = h·f) as well as Einstein’s mass-energy equivalence relation (E = mc2). A wavicle will, therefore, carry energy but it will also pack one or more units of Planck’s quantum of action. Both the energy as well as this finite amount of physical action (Wirkung in German) will be conserved—cycle after cycle.

2. Hence, equilibrium states should be thought of as electromagnetic oscillations without friction. Indeed, it is the frictional element that explains the radiation of, say, an electron going up and down in an antenna and radiating some electromagnetic signal out. To add to this rather intuitive explanation, I should also remind you that it is the accelerations and decelerations of the electric charge in an antenna that generate the radio wave—not the motion as such. So one should, perhaps, think of a charge going round and round as moving like in a straight line—along some geodesic in its own space. That’s the metaphor, at least.

3. Technically, one needs to think in terms of quantized fluxes and Poynting vectors and energy transfers from kinetic to potential (and back) and from ‘electric’ to ‘magnetic’ (and back). In short, the electron really is an electromagnetic perpetuum mobile ! I know that sounds mystical (too) but then I never promised I would take all of the mystery away from quantum physics ! 🙂 If there would be no mystery left, I would not be interested in physics. :wink: On the quantization of flux for superconducting loops: see, for example, http://electron6.phys.utk.edu/qm2/modules/m5-6/flux.htm. There is other stuff you may want to dig into too, like my alternative Principles of Physics, of course ! 🙂